Dimension Reduction by Mutual Information Feature Extraction
نویسنده
چکیده
During the past decades, to study high-dimensional data in a large variety of problems, researchers have proposed many Feature Extraction algorithms. One of the most effective approaches for optimal feature extraction is based on mutual information (MI). However it is not always easy to get an accurate estimation for high dimensional MI. In terms of MI, the optimal feature extraction is creating a feature set from the data which jointly have the largest dependency on the target class and minimum redundancy. In this paper, a component-by-component gradient ascent method is proposed for feature extraction which is based on one-dimensional MI estimates. We will refer to this algorithm as Mutual Information Feature Extraction (MIFX). The performance of this proposed method is evaluated using UCI databases. The results indicate that MIFX provides a robust performance over different data sets which are almost always the best or comparable to the best ones .
منابع مشابه
Dimension reduction for speaker identification based on mutual information
Dimension reduction is a necessary step for speech feature extraction in a speaker identification system. Discrete Cosine Transform (DCT) or Principal Component Analysis (PCA) is widely used for dimension reduction. By choosing basis vectors from basis vector pool of DCT or PCA which contribute more to data distribution variance or reconstruction accuracy of speech data set, we can transform th...
متن کاملDimension Reduction by Mutual Information Discriminant Analysis
In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction u...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملMultiple Sensor Image Registration, Image Fusion and Dimension Reduction of Earth Science Imagery
The goal of our project is to develop and evaluate image analysis methodologies for use on the ground or on-board spacecraft, particularly spacecraft constellations. Our focus is on developing methods to perform automatic registration and fusion of multisensor data representing multiple spatial, spectral and temporal resolutions, as well as dimension reduction of hyperspectral data. Feature ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1207.3394 شماره
صفحات -
تاریخ انتشار 2012